nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo journalinfonormal searchdiv qikanlogo popupnotification paper paperNew
2025, 05, No.277 26-29
基于渐近特征金字塔的钢管内壁缺陷检测方法研究
基金项目(Foundation):
邮箱(Email):
DOI:
摘要:

提出一种基于深度学习技术的发动机钢管内壁缺陷检测方法,旨在提高检测的准确性和效率。传统的检测手段依赖人工观察,容易受主观和环境因素影响,准确性有限。针对这些局限性,设计了一种改进的网络结构,结合ConvNeXt V2主干网络和AFPN(Adaptive Feature Pooling Network)颈部,以增强特征提取和多尺度目标检测的能力。ConvNeXt V2作为主干网络,采用创新的卷积结构和全局响应归一化(GRN)技术,有效提升了特征表达能力,同时降低了计算复杂度。GRN技术通过聚合和归一化操作,增强了通道间的对比度和选择性,防止了特征崩溃现象,提高了特征的多样性。AFPN颈部则利用自适应特征池化技术整合不同尺度的特征图,增强了模型对多尺度目标的检测能力,尤其对复杂场景中缺陷的识别至关重要。改进的网络结构通过特征融合技术,提高了模型对不同类型缺陷特征的敏感度。结果表明,使用改进后的网络mAP50%提高了8.9%。

Abstract:

In this paper, a defect detection method for the inner wall of engine steel tube based on deep learning technology is proposed, which aims to improve the accuracy and efficiency of detection. Traditional detection methods rely on manual observation, which is easily affected by subjective and environmental factors, and has limited accuracy. In view of these limitations, an improved network structure is designed, which combines the ConvNeXt V2 backbone network and the Adaptive Feature Pooling Network(AFPN) neck to enhance the ability of feature extraction and multi-scale object detection. As the backbone network, ConvNeXt V2 adopts innovative convolution structure and Global Response Normalization(GRN) technology, which effectively improves the feature expression ability and reduces the computational complexity. GRN technology enhances the contrast and selectivity between channels through aggregation and normalization operations, prevents feature collapse, and improves feature diversity. In the neck of AFPN, the adaptive feature pooling technology is used to integrate the feature maps of different scales, which enhances the model's ability to detect multi-scale targets, especially for the identification of defects in complex scenes. The improved network structure improves the sensitivity of the model to different types of defect features through feature fusion technology. The results show that the use of the improved network mAP 50% is increased by 8.9%.

参考文献

[1] He Y ,Song K ,Meng Q, et al. An end-to-end steel surface defect detection approach via fusing multiple hierarchical features[J]. IEEE Transactions on Instrumentation and Measurement,2020,69(4):1493-1504.

[2]杨莉,张亚楠,王婷婷,等.基于改进FasterR-CNN的钢材表面缺陷检测方法[J].吉林大学学报(信息科学版),2021,39(4):409-415.

[3]翁玉尚,肖金球,夏禹.改进Mask R-CNN算法的带钢表面缺陷检测[J].计算机工程与应用,2021,57(19):235-242.

[4]韩强,张喆,续欣莹,等.基于FFR-CNN钢材表面缺陷检测算法[J].太原理工大学学报,2021,52(5):754-763.

[5]谈世磊,别雄波,卢功林,等.基于YOLOv5网络模型的人员口罩佩戴实时检测[J].激光杂志,2021,42(2):147-150.

[6]史胡祎.基于深度学习的城市道路行人跟踪与轨迹预测研究[D].西安:西安理工大学,2021.

[7] Wang C Y,Liao H Y M. YOLOv7:Train-able bag-of-freebies sets new state-of-the-art for real-time object detectors[EB/OL].[2024-1-23].http://arxiv.org/abs/2207.02696.

[8] Yang G Y, Lei J, Zhu Z K, et al. AFPN:asymptotic feature pyramid network for object detection[C]//2023 IEEE Interna-tional Conference on Systems,Man,and Cybernetics(SMC).Ho-nolulu,Oahu,HI,USA.IEEE,2023:2184-2189.

[9] Liu Y C ,Shao Z R,HOFFMANN N.Global attention mecha-nism:retain information to enhance channel-spatial interac-tions[EB/OL].[2024-2-12].http://arxiv.org/abs/2112.05561.

[10] Zhang Y F, Ren W Q, Zhang Z, et al. Focal and efficient IOU loss for accurate bounding box regression[J]. Neurocomput-ing, 2022, 506(C):146-157.

[11]熊恩杰,张荣芬,刘宇红,等.面向交通标志的Ghost-YOLOv8检测算法[J].计算机工程与应用,2023,59(20):200-207.

[12]刘辉,刘鑫满,刘大东.面向复杂道路目标检测的YOLOv5算法优化研究[J].计算机工程与应用,2023,59(18):207-217.

基本信息:

DOI:

中图分类号:TG115;TP18

引用信息:

[1]董鑫.基于渐近特征金字塔的钢管内壁缺陷检测方法研究[J].通信与信息技术,2025,No.277(05):26-29.

基金信息:

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文